

本記事は, 文部科学省ナノテクノロジープラットフォーム事業 技術スタッフ表彰について紹介するものです.

文部科学省ナノテクノロジープラットフォーム 令和元年度技術スタッフ表彰 技術支援貢献賞 複合量子ビーム超高圧電子顕微解析研究室における技術支援 受賞者 北海道大学 微細構造解析プラットフォーム 大久保 賢二氏・谷岡 降志氏に聞く

実験室の大多氏(左),谷岡氏(中),大久保氏(右)と横平氏

展示会場にて

文部科学省ナノテクノロジープラットフォーム事業(NPJ)は、微細構造解析,微細加工,分子・物質合成の, 三つの技術領域で,最先端の研究設備とその利用・解析のノウハウを提供することにより,異分野癒合を図り,イ ノベーションの創出に寄与することを目指している.全国にまたがる 25 の大学・研究機関が連携して提供する共 用設備のネットワークは,設備を持たず,経験の少ない研究者が,最先端設備を利用して研究することを可能にし た.特にプラットフォームの支援スタッフによる設備利用,解析のノウハウ提供が有効であるため,NPJ は毎年, 優れた支援を行ったスタッフを表彰してきた.令和元年度は,2020 年 1 月 29 日に第 19 回国際ナノテクノロジー 総合展・技術会議(nano tech 2019)の展示会セミナー会場で,6 件の表彰が行われ,展示会場に支援の内容を紹 介するポスターが展示された[1].技術支援貢献賞が「複合量子ビーム超高圧電子顕微解析研究室における技術支援」 に贈られ,受賞者は,北海道大学 微細構造解析プラットフォームの大久保 賢二(おおくぼ けんじ),谷岡 隆志(た におか たかし),大多 亮(おおた りょう),横平 綾子(よこひら りょうこ)の4氏であった[2].どのような支援 が行われたか,表彰式に出席された大久保氏と谷岡氏から,展示の行われた東京ビッグサイトで,お話を伺った.

1.1 北海道大学微細構造解析プラットフォームの 概要

北海道大学(北大)はNPJの三つの技術領域のうち, 微細構造解析, 微細加工の二つに参画する. 北海道大学 微細構造解析プラットフォーム(PF)は, 多様なナノデ バイス・ナノ材料の表面・表層から内部に至る一貫した 包括的な先進ナノ構造・状態解析を支援する. (1)表面構 造(2)内部構造・3D構造(3)電子状態分析の, 三つの観 点からナノ~マイクロメートルオーダーにわたる材料・ デバイスの分析・評価に関する研究支援を行う [3][4]. この観点に沿って,表1に示すような装置が設置され, 共用に提供されている.

内部構造・3D 構造の分析が,本稿の受賞者グループが 支援する対象であり,装置は北海道大学大学院工学研究 院 エネルギー・マテリアル融合領域研究センター 超高圧 電子顕微鏡研究室に設置されている.受賞者は,北海道 大学大学院工学研究院の工学系技術センターに所属する.

1.2 北海道大学工学系技術センターが微細構造 解析 PF を支える

北海道大学は平成20年(2008年),工学研究院,工学院, 工学部,情報科学研究科,及び量子集積エレクトロニク

観点	装置例		
	X 線光電子分光装置 XPS	オージェ電子分光装置	電子プローブマイクロアナ
表面構造		AES	ライザ FE-EPMA
	複合量子ビーム超高圧電子	レーザー超高圧電子顕微鏡	高分解能 3 次元構造評価装
	」 與微鏡 HVEM	HVEM	置 Titan
内部構造・ 3D構造			
電子状態分	環境セル対応電子顕微鏡シ ステム TEM	超高真空・極低温・高磁場 SPM	スペクトルイメージング対 応高速レーザー共焦点顕微 鏡 A1
析			

表1 北海道大学微細構造解析プラットフォームの主な共用設備

図1 北海道大学工学系技術センター

ス研究センターの教育・研究の技術支援を行うことを目 的とする工学系技術センターを大学院工学研究院に設置 した [5]. 大久保氏らはこの技術センターに所属する技術 職員である. 技術センターのメンバーは,大学院内の各 部門やセンターといった事業体に派遣という形で配置さ れる.

工学系技術センターに技術部が置かれ,技術部は大久 保氏が部長として取りまとめ,3室6班で構成されている. 第一技術室に機器支援班,安全衛生班,第二技術室に工 作支援班,工作研究支援班,第三技術室に情報管理支援班, 情報技術支援班がある.機器支援班には13名のメンバー がいて,超高圧電子顕微鏡研究室,ナノマイクロマテリ アル分析研究室,高エネルギー超強力X線回折室,光電 子分光研究室,核磁気共鳴装置研究室,などに配置され ている.大久保氏ら4名の受賞者は機器支援班に所属し, 超高圧電子顕微鏡研究室に配置されている.超高圧電子

図2 超高圧電子顕微鏡室

顕微鏡研究室が微細構造解析 PF に参画しているので,学 内とともに NPJ のユーザーにも対応する. 微細構造解析 PF には,ナノマイクロマテリアル分析研究室,光電子分 光研究室なども参画している. 超高圧電子顕微鏡研究室 はその特徴を表す「複合量子ビーム超高圧電子顕微解析 研究室」の呼称を用いている.

1.3 複合量子ビーム超高圧電子顕微解析研究室の 共用設備 [4][6]

複合量子ビーム超高圧電子顕微解析研究室の共用設備 の主な支援装置は,表1の「内部構造・3D構造」の列 に示した,複合量子ビーム超高圧電子顕微鏡,収差補正 走査型透過電子顕微鏡(STEM),レーザー超高圧電子顕 微鏡の3装置に加えて,200kV透過電子顕微鏡(TEM), 電界放射電子銃搭載分析 TEM,電界放射型走査電子顕微 鏡などの電子顕微鏡群がある.また,電子顕微鏡で観察

図3 レーザー超高圧電子顕微鏡模式図

する試料作製のため,試料作製装置群として,集束イオ ンビーム装置 (FIB),アルゴンミリング装置,クロスセ クションポリッシャーなどが用意されている.

この中で、複合量子ビーム超高圧電子顕微鏡は2台 の高エネルギーイオン加速器を持つ世界に唯一の超高圧 電子顕微鏡である。複合量子ビーム電子顕微鏡解析は、 1971年に、原子炉材料の中性子照射損傷に関する基礎研 究から始まった。10年後、実用材料開発に必要な基礎資 料を得るためには、より高圧の電子顕微鏡が必要になっ て加速電圧1,000kVの装置に更新された。2007年には この装置のイオンポートにレーザーが敷設され(図3)、 レーザー超高圧電子顕微鏡として運用されている[7].

さらに,1998年に現在の複合量子ビーム超高圧電子顕 微鏡(日本電子 ARM-1300)が運用を開始した(図 4). 加速電圧 1,250kV,分解能 0.118nm で,付属機器に,二 軸傾斜ホルダー,加熱ホルダー,液体窒素冷却ホルダー を持ち,試料の加熱,冷却ができる.また,2台のイオ

図4 複合量子ビーム超高圧電子顕微鏡:電子線鏡筒・イオン源(左)と高圧タンク・レーザー(右)

図 5 収差補正走查型透過電子顕微鏡:外観(左),操作卓(右)

FIB加工装置 JEM-9320FIB

精密イオン研磨装置 PIPS

図6 超高圧電子顕微鏡研究室に設置された試料作製装置群の装置例

ン加速器: 300kV イオン加速器 (H⁺, He⁺, Ar⁺, Ne⁺), 400kV イオン加速器(Ti⁺, Ni⁺, Fe⁺, Ag⁺)(図4 左上部), 3種のレーザー: He-Cd レーザー(波長 325nm), ナノ秒 パルスレーザー(波長,パルス幅:532m, 5-7ns),フェ ムト秒パルスレーザー(同:800nm, 100fs)(図4右) が付属している. 主な用途は、材料に対するイオン・レー ザー・電子線照射効果のその場観察などである. 2013~ 2014 に CCD カメラを導入して動画で観察できるように なった.

収差補正走査型透過電子顕微鏡は、高分解能・三次元 観察のニーズに応え、ナノテクノロジープラットフォー ム事業によって導入された(図5).米国 FEI 社(その 後 Thermo Fisher Scientific 社に吸収)のもので Titanの 名が付いている.加速電圧は, 60kV, 80kV, 200kV, 300kV から選べ, 分解能は 300kV において TEM, STEM とも 70pm である. 付属機器には、二軸傾斜ホルダー、 トモグラフィー用ホルダー, SDD (シリコンドリフト検 出器)を4基搭載した EDS(エネルギー分散型X線分 光)システムなどがある.また、三次元構造評価などの 解析ソフトウェアを装備する. TEM/STEM 高分解能観察, EDS マッピング、EELS(電子エネルギー損失分光)分析、 電子線トモグラフィーが主な用途である.

電子顕微鏡試料作製のための試料作製装置群には、図6 に例示する装置などがある.

2.1 超高圧電子顕微鏡等の利用状況

複合量子ビーム超高圧電子顕微鏡 (HVEM)の用途には、 イオン・レーザー・電子線照射効果のその場観察に加え て、超高分解能の構造像・格子像の観察、厚膜試料の観察、 試料加熱・冷却過程のその場観察、などがある. マルチビー ムを用いるきっかけになった、材料への放射線照射を研 究対象に、日本原子力研究開発機構(JAEA)に関係する 学内の先生もよく使っている.

収差補正走査透過電子顕微鏡(Titan)は、高感度の EDS 検出器を活用した組成分析やマッピング像の取得, 鉄鋼材料などでナノメートルオーダーの微細析出物や界 面の構造解析,低加速電圧でのグラフェンやナノチュー ブ,ポリマー材料などの高分解能観察,EDS では難しい LiやBなどの EELS を用いた組成分析やマッピング像の 取得などに利用されている.

超高圧電子顕微鏡:HVEM と Titan の年間利用件数を図 7 に示した. Titan の年間稼働日数は 180 日前後で,稼働 率は 90% を超える. HVEM の年間稼働日数は 2018 年に, 前年の半分以下に減少した.2018年9月6日の北海道 胆振東部地震で高圧タンクが破損し、修理の間、装置が

止まっていたことが影響している.

これらの超高圧電子顕微鏡の利用者の半数は学内で, 収差補正走査透過電子顕微鏡の学外の利用は,企業の利 用(図8右,青)が企業以外(同,茶)を大きく上回り, 複合量子ビーム超高圧電子顕微鏡の場合と逆転している.

図7 超高圧電子顕微鏡の稼働状況

上) 複合量子ビーム 超高圧電子顕微鏡 (下) 収差補正走査透過電子顕微鏡

2.2 支援の基になる装置の保守・故障修理

支援スタッフは,利用者の技術相談に応じ,機器利用 の指導を行い,利用者に代わって装置を操作・結果を解 析する技術代行を行う.これらの利用者への対応の陰で は,装置の保守を行い,機能の維持,性能の向上を図っ ている.

最近の大きな作業は、北海道胆振東部地震後の高圧タ ンクの修理だった. 震災では複合量子ビーム超高圧電子 顕微鏡の加速管に高電圧を供給する高圧タンクが壊れた. 高圧タンクの中には、高電圧を発生するコンデンサのス タックがあり、絶縁のために SF₆(六フッ化硫黄)ガスが 充填されている. 修理は装置のメーカが行うが、タンク に入っている SF₆ ガスの修理前の回収は大久保氏らが行 なった(図9). SF₆を回収して高圧タンクの蓋を開けて、 コンデンサの塊を外に出してみたら、コンデンサ間の絶 縁に使っているプラスチックが破損していた. コンデン サスタックの修理は装置のメーカが行った.

また,電子顕微鏡はダンパーで支えられ,水平を保つ ためのセンサが地下にある.ところが,建物のコンクリー トが変形して,ダンパーのセンサ部分が曲がってしまっ ていた.このほか様々な修理を行って,正常な動作に復 帰させた.

平常時でも、装置のメーカによる点検保守はあるが、 支援スタッフが0リング交換などを常時行なっている. 電子銃のメンテナンスを行うときには、SF₆ガスを回収す る. SF₆ ガスは絶縁性に優れ, 化学的に安定であるが, 温 室効果ガスの一つとされ、使用や取り扱いが規制されて いる. SF₆は高圧で液化し、高価でもある. SF₆を使用す るには高圧ガス製造保安責任者の免許が必要で、支援ス タッフはこの免許を取得している. 大久保氏が持ってい た本資格を谷岡氏らも取得し、作業を分担できるように なった. 高圧タンクの蓋を開け、大きなコンデンサの塊 を取り出すにはクレーンを使う. このほか電子顕微鏡の 重い部品を扱う必要から、大久保氏はクレーン操作の資 格も取っている. EDS では X 線を扱うことにもなるので X線のライセンスも取った. 支援スタッフは, 担当する 装置の運用・保守に必要となる国家資格の取得のもとに 支援を行なっている.

複合量子ビーム超高圧電子顕微鏡にはレーザー照射の ための光学系が設けられている.光学系は温度に敏感な ので,温度管理が重要になる.建屋にパッケージエアコ ンを設置して室温を21±1℃に制御している.施設の空 調温度管理も支援スタッフの業務となっている.

さらに、電子顕微鏡観察用試料作製でも、装置の保守 や操作に工夫を加えて利用の支援を行なっている。例え ば、精密イオン研磨装置 PIPS は、試料表面に加速したア ルゴン (Ar) イオンを当て、原子をはじき出すこと(ス パッタリング)により試料表面を削り、透過電子顕微鏡 (TEM) 観察用薄膜試料を作製する.試料から飛び出した イオンがイオン銃に着くと、Ar イオンビームの出力が落 ちるので、定期的にクリーニングする.また、FIB(集束 イオンビーム)で削った微小な TEM 観察試料を試料台か ら TEM のホルダーに載せるマイクロピックアップに工夫 をした.外径 1mm の中空のガラス管の先を丸めてプロー ブを作り、光学顕微鏡下でプローブを動かして試料を拾 い、TEM のホルダーに載せる.しかしこの作業が難しい. 機器を利用する学生に代わって作業することもある.先 生は細かい作業の指導まではできないので、技術職員が 学生をサポートし、技術指導も行なっている.

図9 装置の保守・修理の場景

2.3 複合ビーム顕微観察への対応

複合量子ビーム超高圧電子顕微鏡は、電子線鏡筒の軸 方向にイオン源が配置され、鏡筒の横斜めからレーザー 光が入射する(図3,図10).複合量子ビーム超高圧電子 顕微鏡の使用にあたっては、電子顕微鏡観察のための電 子線の制御・調整に加えて、イオンビーム、レーザービー ムの制御・調整を必要とするから、操作は煩雑で慎重に 行い、習熟を要する.

複合量子ビーム電子顕微鏡における照射実験において 注意すべきことは、不要にビームを当てないことという. レーザービームやイオンビームが当たると、電子レンズ を構成するポールピース(磁極)など電子顕微鏡の部品 が傷つくから、入念に調整する.

照射に対する雰囲気の影響を見るため,環境ホルダー を用意した.名古屋大学の反応科学超高圧電子顕微鏡の 環境ホルダーは差動排気でホルダー内の雰囲気ガスを制 御するが,北海道大学では小型,簡便な,薄膜間のギャッ プにガスを流す形のものを用意した.SiN_xの薄膜で0.5mm のギャップを作り,そこにH₂,Arなどのガスを細く流し て実験する.加熱,液体窒素冷却ができる加熱ホルダー はメーカに作ってもらったが,Pt-Pt/Rhの微小な熱電対 をスポット溶接し,炉で温度制御できるようにした.

レーザー照射実験では、レーザービーム位置調整が難 しい.電子顕微鏡の操作卓は1階にあるが、レーザーは 2階に置かれているため2人がかりで分かれて調整する. 温度によって光学系が変化するのを避けようと21±1℃ の室温管理をしている.電子顕微鏡観察の際、試料室は5 ×10⁻⁶ Paの超高真空になっているので、レーザー出力 は調整、試行の段階であらかじめ測っておく.レーザー

の当たっていることは、光センサがホルダーについてい るので観察中も確認できる.

このような保守,工夫の下に様々な装置利用・支援が 行われた.次章でいくつかの例を紹介する.

3. 複合量子ビーム超高圧電子顕微解析 研究室における観察・技術支援・成果例

3.1 マルチビーム共照射によるナノ構造形成

複合量子ビーム超高圧電子顕微鏡を用いて,材料への マルチビーム照射効果を,微細構造組織を観察しながら 調べることができる.

(1) イオンビームとレーザー光の照射[8]

イオン照射,パルスレーザー照射によって基板表面に ナノ構造を形成できることは知られていた.二つのビー ムを照射したらどんな相乗効果が得られるか,図10のイ オン・レーザー照射装置を用いて石英(SiO₂)基板に蒸着 した金(Au)薄膜にビームを照射した.波長532nmの ナノ秒パルスレーザーを照射すると,基板上にランダム にAuナノ粒子が分散しているのが走査電子顕微鏡(SEM) で確認された(図11左).100keVの電圧で加速したAr⁺ ビームを照射した場合は,基板表面にランダムにAuナノ 粒子が埋め込まれていた.これに対して,パルスレーザー を 6,000 パルス,同時照射したところ,レーザー波長に 近い~540nmの間隔で粒径~20nmの金粒子が周期的 に並んでいた.光吸収はビーム照射によって低下するが, 共照射の時が最も低い(図11右).しかも吸収のピーク は Au の粒径に依存せず,共照射による周期構造形成の効 果と考えられた.

(2) レーザー光と電子線の照射 [9]

宇宙空間や原子炉内の高エネルギー量子線の照射に よって、ランダムに分布する点欠陥(空格子点や空格子点・ 格子間原子ペア)が結晶格子中に導入されるが、その振 る舞いは明らかでなかった.そこでレーザー超高圧電子 顕微鏡を用い、ステンレス鋼について複合量子ビーム(光 子と電子)照射による空孔(void)形成過程を観察した(図 12).レーザーと電子線の逐次照射では、レーザー照射 で空孔核が生成し、電子線照射で核から空孔が成長する.

図 11 イオン・レーザー共照射によるナノ構造形成:(左) 照射前後の表面 SEM 像,(右) 照射領域の光吸収特性

図 12 複合量子ビーム照射によるステンレス鋼中の空孔形成(a)高温電子線照射,(b)高温レーザー照射, (c)室温レーザー後高温電子線,(d)高温でレーザー後電子線,(e)高温同時照射

ところが同時照射では、空格子点と格子間原子の再結合 により空孔の膨らみが著しく抑えられることが分かった. 量子ビームによる格子欠陥形成機構解明の糸口になる結 果が得られたという.

3.2 ナノ秒パルスレーザー照射による金ナノ粒子 形成のその場観察[10]

金(Au)などの貴金属元素ナノ粒子(NP)は、光照射 により伝導電子が集団振動する表面プラズモン共鳴(SPR) を起こす. SPR は周辺の電界を強め、バイオセンサ、光 触媒などの性能を高める. SPR 周波数は NP の大きさ、形 状、間隔に依存するから、NP の形態、分布を制御して作 る必要がある.そこで AuNP の生成過程を複合量子ビー ム超高圧電子顕微鏡で観察した.

Au 薄膜(厚さ15nm)を、Ar⁺イオンミリングで裏面 から部分的に薄くした SiO₂ ガラス基板に蒸着し、電子顕 微鏡内でレーザービームを照射して、AuNP の形成過程を 観察した. 波長 532nm、パルス幅5~7ns のレーザー光 を 2Hz の繰返し周波数で照射し、超高圧電子顕微鏡で観 察し、CCD カメラでパルスに同期して動画撮影した. 図 13 に、蒸着後、照射前の一様な薄膜から、パルスレーザー 照射によって、AuNP が形成・成長(青色矢印)、移動(黄 色矢印)して行く様子が観察された.

3.3 ウイルス粒子の超高圧電子顕微鏡観察[11]

感染症を引き起こすヘルペスウイルスは、感染後神経節 に潜伏感染し、疲労、妊娠、怪我、熱性疾患などの原因 で活性化され、口唇周辺、陰部などの皮膚に水疱を生じ る.殺ウイルス剤を与えた時のウイルスの変化を超高圧 電子顕微鏡観察(HVEM)で追跡した.加速電圧 200kV の電子線はウイルスを透過するため試料が傷まないので、 追跡が可能になる.感染した細胞から抽出されたウイル ス粒子に糖脂質 MGDC (monogalactosyl diacylglyceride) を与えた後の変化を追った.生理食塩水処理した場合に 比べ、ウイルス粒子は小さくなっていた(図14).この 観察の結果,MGDCのウイルスの殺傷効果を確認できた.

3.4 触媒粒子の構造解析 [12]

光によって触媒活性が増進され、人工光合成の可能性 もある光触媒の研究開発が進んでいる.光触媒材料とし てタングステン酸ビスマス(Bi₂WO₆; BWO)が提案され、 BWO ナノ結晶板が重ね合わさったフレークボール(FB) 状の BWO(図15)はこの特異な構造を持たない BWO よ り触媒活性が高い.FB BWOは水熱条件下で生成されるが、 その条件最適化を目指して、生成メカニズムを、生成各 段階における BWO の構造解析から追求した.これには、

図13 パルスレーザー照射による金ナノ粒子形成過程

図 14 ウイルス粒子の HVEM 観察: A リン酸緩衝生理食塩水処理; B・C 50 µ g/ml MGDC 処理 30 分後(スケールバー: 200 nm)

図 15 FB BWO の様々な倍率の FE-SEM 像

図 16 CdSe/CdS/ZnS 量子ドットの電子線トモグラフィー:(a)~(b)STEM-HAADF 像(c)立体(volume rendering)像 (d)~(f)断面(slice)像(g)立体視像(surface rendering)(h)QD の重心座標

粉末X線回折による組成と結晶構造,電界放射走査電子 顕微鏡(FE-SEM)による形態,FIB加工・FE-SEMによる 断面像,超高圧電子顕微鏡による内部空隙(void)の観察, EDSによる元素分布,と様々な構造解析手段を駆使した. この結果,タングステン(W)酸で覆われたオキシ水酸 化ビスマス(Bi)水滴が生成し、内側のBiが外側のWと 水滴表面で反応するという2段階プロセスでFBBWOが 出来るという生成過程が提案された.

3.5 ナノ粒子の3D電子線トモグラフィー観察[13]

人工光集電アンテナ,光合成,たんぱく質間相互作用

検出等に用いようとしている量子ドット超分子集合体に おけるエネルギー輸送研究のため、CdSe/CdS/ZnS(コア /シェル/シェル)量子ドットの構造を高分解能電子顕 微鏡による三次元電子線トモグラフィー法により解析し た.

収差補正走査透過型電子顕微鏡 Titan を用い,粘土ナ ノシート上に静電相互作用により配列した直径の異なる 2 種類の CdSe/CdS/ZnS 量子ドットの集合組織を STEM-HAADF(高角環状暗視野)像により高分解能で観察し, 電子線トモグラフィー法により三次元像を再構築した(図 16).得られた像から,粒子はナノシートの両面上に平面 的に配列していた.直径の異なる粒子間の重心間距離の 解析を行い、物性評価に利用した.

北海道大学微細構造解析プラットフォームの複合量子 ビーム超高圧電子顕微解析研究室は、複合量子ビーム超 高圧電子顕微鏡やレーザー超高圧電子顕微鏡によって, 粒子線や光の照射による原子構造の変化の追跡を支援し, 収差補正走査型透過電子顕微鏡によって原子レベルの構 造解析を支援している. 複合量子ビームを扱うため装置 の調整・操作には単一ビームにない難しさがある. 複合 装置の操作に熟達する一方、装置の保守・性能維持、機 能拡充に多大な努力が行われている. その結果, 鋼の中 の格子欠陥生成機構解明、ウイルスのような生体材料の 観察,量子ドットの構造解析など様々な研究成果が生ま れている. 今後はユーザニーズに応え, 加熱や冷却やガ スを流しながらのその場観察・分析など支援の幅を広め たいという. 電子顕微鏡観察では試料作りが重要なので, 進化する試料作製技術をいち早く取り入れて、ユーザー からの相談に対し解決策を提案し、作って見せるように したい.と大久保氏らは語った.複合量子ビームという 特徴を持った電子顕微鏡施設で、電子顕微鏡観察に強い 意欲を持ち、献身的な保守、機能向上の元に行われる支 援により、多くの利用成果の生まれることを期待したい.

- [1] nano tech 2020 第 19 回国際ナノテクノロジー総合 展・技術会議 開催 https://www.nanonet.go.jp/ntj/ topics_gov/?mode=article&article_no=5025
- [2] 複合量子ビーム超高圧電子顕微解析研究室における技 術支援 https://www.nanonet.go.jp/pages/research_ support_award/R01_Award_1.pdf
- [3] 北海道大学 微細構造解析プラットフォーム実施機関 https://www.nanonet.go.jp/ntj/insti/hokudai/nc/
- [4] 支援装置・微細構造解析 http://www.cris.hokudai. ac.jp/cris/nanoplat/facility/
- [5] 北海道大学 大学院 工学研究院 工学系技術センター https://tc.eng.hokudai.ac.jp
- [6] エネルギー・マテリル融合領域研究センター 超高圧 電子顕微鏡研究室 https://labs.eng.hokudai.ac.jp/

labo/carem/wp/wp-content/uploads/2017/07/ HVEM2016_Hokudai.pdf

- [7] 渡辺 精一,谷津 茂男,大久 保賢二,「レーザー敷設型 超高圧電子顕微鏡の開発とその可能性」,顕微鏡 Vol. 46, No. 3, pp. 151-155 (2011)
- [8] Ruixuan Yu, Tamaki Shibayama, Xuan Meng, Shinya Takayanagi, Shigeo Yatsu, Junya Ishioka, and Seiichi Watanabe, "Effects of ion and nanosecond-pulsed laser co-irradiation on the surface nanostructure of Au thin films on SiO₂ glass substrates", Journal of Applied Physics, Vol. 115, p. 143104 (2014)
- [9] Zhanbing Yang, Seiichi Watanabe & Takahiko Kato, "The Irradiation Effect of a Simultaneous Laser and Electron Dual-beam on Void Formation", Scientific Reports Vol. 3, Article Number 1201 (2013); DOI: 10.1038/srep01201
- [10] Ruixuan Yu, Tamaki Shibayama, Junya Ishioka, Xuan Meng, Yanhua Lei, and Seiichi Watanabe, "Plasmonic surface nanostructuring of Au- dots@SiO₂ via laserirradiation induced dewetting", Nanotechnology Vol. 28, p. 275701 (11 pp) (2017)
- [11] Kyoko Hayashi, Jung-Bum Lee, Kinya Atsumi, Mana Kanazashi, Tamaki Shibayama, Kazumasa Okamoto, Toshio Kawahara, and Toshimitsu Hayashi, "In vitro and in vivo anti-herpes simplex virus activity of monogalactosyl diacylglyceride from Coccomyxa sp. KJ (IPOD FERM BP-22254), a green microalga", PLOS One. 2019 Jul 16; Vol. 14, No. 7, p. e0219305.
- [12] H. Hori, M. Takase, M. Takashima, F. Amano, T. Shibayama, and B. Ohtani, "Mechanism of formation, structural characteristics and photocatalytic activities of hierarchical-structured bismuth-tungstate particles", Catalysis Today, Vol. 300, 1 February 2018, pp. 99-111
- [13] Yohei Ishida, Ikumi Akita, Thomas Pons, Tetsu Yonezawa, and Niko Hildebrandt, "Real-Space Investigation of Energy Transfer through Electron Tomography", Journal of Physical Chemistry C 2017, Vol. 121, No. 51, pp.28395 – 28402

(図は全て大久保氏・谷岡氏から提供された)

(古寺 博)