

本記事は, 文部科学省ナノテクノロジープラットフォーム事業 技術スタッフ表彰について紹介するものです.

文部科学省ナノテクノロジープラットフォーム 平成 30 年度技術スタッフ表彰 技術支援貢献賞 高精度 FIB 加工技術を用いた微細構造観察 受賞者 名古屋大学 微細構造解析プラットフォーム 中尾 知代氏に聞く

最先端の研究設備とその利用・解析のノウハ ウを提供することにより、異分野融合を図り、 イノベーションの創出に寄与することを目指し た、 文部科学省ナノテクノロジープラットフォー ム事業(NPJ)は、数々の利用成果を生み出した. その成果の多くは、装置を所有する研究室や機 関が機器利用をユーザーに開放するだけでなく, スタッフが利用・解析を支援したことによって もたらされた. このため, NPJ は平成 26 年度 (2014年度)より技術スタッフ表彰を行なうこ ととした [1]. 毎年数件の表彰が, 国際ナノテク ノロジー総合展・技術会議の折に行われている. 平成 30 年度の表彰は 2019 年 1 月 30 日に行わ れ [2],「高精度 FIB 加工技術を用いた微細構造 観察」と題した技術支援貢献賞が、名古屋大学 微細構造解析プラットフォームの中尾 知代氏に 贈られた [3]. 中尾氏は当時産休取得中だったた め,表彰式には代理の方が出席した.休暇明けは, 新型コロナウイルス感染対策中となってしまっ たので、Web 会議により、どのような支援が行 われ、どのようなご苦労があったかなどを受賞

FIB-SEM 装置の前で表彰状を持つ中尾氏

.

者の中尾 知代(なかお ともよ)氏に,伺うこととなった.職制上,中尾氏は,名古屋大学 未来材料・システム研 究所 超高圧電子顕微鏡施設に所属し,Web 会議には同施設 特任准教授 荒井 重勇(あらい しげお)氏が同席し, 助言・補足をされた.

1.1 技術領域と共用装置

ナノテクノロジープラットフォーム事業(NPJ)は、ナ ノテクノロジー関連科学技術において基本となる3つの 技術領域:微細構造解析、微細加工、分子・物質合成ごとに、 研究設備とその利用・解析のノウハウを提供するプラッ トフォームを設ける.全国25の大学・研究機関から、延 べ37の組織が実施機関として参画し、名古屋大学は3つ の技術領域のすべてに参画している[4].

微細構造解析プラットフォームは, 微細構造解析分野

における最先端計測共用拠点を構築し,ナノテク・材料 分野における学問的・技術的課題の解決によるイノベー ションに寄与するとともに我が国のナノテクノロジーの 更なる発展,競争力向上,人材育成に貢献する.名古屋 大学 微細構造解析プラットフォームの活動は,名古屋大 学 未来材料・システム研究所 超高圧電子顕微鏡施設が受 け持ち,「高性能電子顕微鏡による反応科学・ナノ材料科 学研究支援拠点」の呼称でその特徴を表している [5].

その代表的な共用装置は、反応科学超高圧電子顕微鏡 である.電子線加速電圧百万ボルトで、1~3µmの厚い 試料の高分解能観察を、温度を変え、各種のガス雰囲気 中で行うことができ、化学反応や合金組織の変化などの 反応科学研究に用いられるのが特徴となっている.名古 屋大学の超高圧電子顕微鏡施設は、この反応科学超高圧

表 1 名古屋大学 微細構造解析プラットフォームの提供する共用装置

高性能電子顕微鏡群

反応科学超高圧走查透 過電子顕微鏡 ^①	高分解能電子状態計測 走查透過型電子顕微鏡 ²	電界放出走查透過電子 顕微鏡	電子分光走查透過電子 顕微鏡		
高分解能透過型電子顕	走查電子顕微鏡	走查電子顕微鏡 JSM			
微鏡システム	Quanta		装置名の肩ツキ丸数字		
			は文中引用時の参照用		
高速加工観察分析装置	バイオ/無機材料用高	集束イオンビーム加工	ビットマップ加工シス		
(FIB-SEM) ³	速 FIB-SEM システム	機 ^④	テム		
アルゴンイオン研磨装 置 ^⑤	クロスセクションポリ ッシャー	低加速イオン研磨装置	その他 試料作製装置群 (切断, 化学研磨等)		

電子顕微鏡を中心に高性能電子顕微鏡群(クラスター) を配置して活動する.さらに電子顕微鏡の使用には、こ れに適した試料の準備が必要となるので、試料作製装置 群を整備している.これにより極微小元素分析、3次元立 体観察、ガス中その場観察、極低温観察など、多様な目 的での利用を可能としている.共用装置の一覧を表1に 示した[5].

1.2 技術支援と利用成果

名古屋大学 微細構造解析プラットフォームの利用形態 は、他のプラットフォームとほぼ同様の、「技術相談」、「技 術補助」,「技術代行」,「共同研究」である.装置の貸出 利用は原則として行わず,利用者自らが機器を操作する 「機器利用」は実技講習会等の受講後に,相談の上で実施 できることとしている.

各利用形態における技術支援は、試料の加工法から観 察方法、装置の選定、解析、コンサルティングに及び、 表2のようなサポートメニューを示している [5].

名古屋大学 微細構造解析プラットフォームの利用者は 全国にまたがる.その手厚い,高度な技術による支援は 数々の利用成果を生み,支援スタッフ表彰を受賞してい る [1]. 表3に最近の名古屋大学 微細構造解析プラット フォームの関係した「秀でた利用成果」表彰を示した [6].

表 2 名古屋大学 微細構造解析プラットフォームのサポートメニュー

薄膜試料への加工	機械研磨(粗研磨)からイオンビーム加工(精密加工), ミクロト			
	ームによる試料作製法などの最適の試料作製法			
電子顕微鏡観察	観察と実験デザイン、最良な電子顕微鏡および観察法の選定			
観察結果の解析	観察結果の解析、観察結果のまとめ、解釈のコンサルティング			

年度	成 果 名	主な利用機器	ユーザー
令和元年	ガス環境下における自動車触媒ナ	反応科学超高圧電子顕微鏡	トヨタ自動車,日本
(2019)	ノ粒子のオペランド TEM 観察[7]		電子,名古屋大学
平成 30	次世代半導体用配線接合材料の高	反応科学超高圧電子顕微鏡, 高速	有限会社 ナプラ
年(2018)	機能材料開発 [8]	加工観察分析装置(FIB-SEM),	
		高分解能透過型電子顕微鏡	
平成 29	塩ストレス下におけるイネ葉の葉	高速加工観察分析装置 (FIB-	近畿大学,名古屋大
年(2017)	緑体の三次元構造解析 [9]	SEM)	学
平成 28	超高効率水素製造光触媒を実現し	高分解能透過型電子顕微鏡	東京大学
年(2016)	た新奇薄膜構造の発見とその構造		
	解析 [10]		

表3 最近の名古屋大学 微細構造解析プラットフォームの関係した「秀でた利用成果」表彰

表に示した 4 つの成果は, NanotechJapan Bulletin 企画 特集「秀でた利用成果」で既に紹介され, 中尾氏は, 参 考文献 [8][9][10] で紹介された利用成果の技術支援を行っ ている.

2.1 電子顕微鏡試料作製の概要

電子顕微鏡観察には,観察に適した試料の存在が欠か せない.電子顕微鏡観察は観察に適した試料の作製から 始まる.名古屋大学 微細構造解析プラットフォームにお ける中尾氏の支援業務 [11] の第一は,電子顕微鏡試料の 作製であるが,観察目的に合った試料ができているか確 認するために電子顕微鏡観察の支援も併せて行っている.

電子顕微鏡には、走査型と透過型の2つの形式がある. 走査型電子顕微鏡 (SEM) では、電子線を走査しながら 試料表面に照射し,照射点から放出される二次電子を検 出して,画像化する.観察する試料の表面が平坦でない と2次元形状が凹凸の影響を受ける.透過型電子顕微鏡 (TEM) では、試料で屈折・散乱されて透過した電子線を 集光,検出,結像させる.電子は物質との相互作用が強 いので、電子線は吸収されやすく、透過能は低い. この ため、検出に必要な量の電子が透過するよう薄い試料を 作製する必要がある.電子線が透過する厚さは、物質と 電子線の加速電圧に依存するが、概ね、加速電圧 100kV の時に 100nm である. したがって, 数 10nm の試料作 製が求められる.加速電圧が高くなると、厚い試料でも 透過観察できるようになる.加速電圧 1,000kV の反応科 学超高圧電子顕微鏡(表1①)では、厚さ数 um の試料 まで観察でき,厚い試料を観察できることは超高圧透過 電子顕微鏡の利点の一つになっている.

電子顕微鏡試料作製法は,切断,研磨,蒸着に分けら れる.切断法は古くから用いられ、ミクロトームという 名の装置でダイヤモンド刃により切片を切り出す.研磨 には化学研磨とイオン研磨があり,前者は研磨液で腐食, あるいは電解液中で電圧をかけて観察領域を所定の厚さ に研磨する.イオン研磨には Ar などのイオンビームによ る研磨, Ga イオンの集束ビームによる局所的研磨などが ある.蒸着は,基板上に真空蒸着等により薄膜試料を作 製する.いずれにせよ,数 10nm の厚さの試料は,電子 顕微鏡試料台に装着できるよう保持手段を必要とし,基 板に蒸着した場合は観察場所の基板を除去しなければな らない.試料保持に金属メッシュを用いる場合は,微細 な試料の移し替えが必要になる.

2.2 イオン研磨による試料作製

本稿で紹介する技術支援では,電子顕微鏡試料作製に, イオン研磨が用いられた.

用いた装置のひとつは,アルゴンイオン研磨装置(表 1⑤)で,集束しないペンシル型のArイオンビームで 試料を研磨して,薄膜試料をつくる.イオンエネルギー は100eV~8keVと低く,最大3mmの試料を冷却して, 双眼顕微鏡・デジタルズームマイクロスコープで観察し ながら,ミリング研磨を行う.

もう一つは,集束イオンビーム加工機(表1④)で, Gaの集束イオンビーム(FIB)で微小領域を研磨する.加 速電圧は 40kV と比較的高い.この装置にはマイクロサ ンプリング機能が付加され,加工する微細な試料をプロー ブで所定位置にセットしたり,切り出した微細な試料を 取り出したりすることができる.マイクロサンプリング[®] は装置メーカーがつけた名称で,数μmの微細な試料を 扱える.FIB 装置には,2次イオンを検出して画像化する SIM(二次イオン顕微鏡)の機能がつけられ,微細試料の 観察ができる.

ナノメートルサイズの薄膜試料をつくるのは難しい. 数 μm の試料を電子顕微鏡試料に加工するには、まず、 加工する試料を研磨装置にセットしなければならない. これにはマイクロサンプリングは格好の手段となる. 3. 2節で詳述する鉛フリーハンダ微粒子の電子顕微鏡試料 作製で、この機能を使った.しかし、優れた装置でも万

図1 FIB で電子顕微鏡試料を作製する際に遭遇した課題例

能ではない.対象に応じた工夫をして使いこなせなけれ ば能力は活かされない.ハンダ微粒子の大きさは 5µm 程 度,大きくても 10~15µm の球状で,幅 10µm 程度の 平たい試料のピックアップを想定したプローブに合わな い.時間をかけて SIM で見て探していると融点の低いハ ンダは加熱されて溶ける.保護膜を被着する時にも溶け る.一部でも溶けたような研磨表面は観察に適さない. その他様々な課題に遭遇したが,ハンダ微粒子を加工の 際に保持するメッシュにプローブでピックアップするの は手早く,できるだけ SIM で見ない,などの工夫を行い, FIB 研磨条件の最適化を行って,電子顕微鏡観察に適した 試料を作製できるようになったという.図1は,初期の 失敗例である.

2.3 FIB-SEM による連続断面観察:Cut & See

試料の深さ方向の構造を知るには,観察した表面から 薄層を削り取り,新しく露出した表面を観察することを 繰り返し,多数の断面画像から試料構造を3次元(3D) 構築する,Cut & See の手法が注目,活用されるようになっ た.これには,ひとつの試料室に集束イオンビームと電 子線の2つの鏡筒をつけ,FIB 加工と SEM 観察の機能を 兼ね備えた FIB-SEM 装置が用いられる.

FIB-SEMにおける2つの鏡筒と試料の配置には3つの 方式がある.ひとつの方式(図2左)では、垂直に配置 される SEM 鏡筒の光軸に対し、FIB の鏡筒の光軸が 60° 程度の傾きとなるよう配置する. 試料表面を SEM 観察時 には電子線, FIB 加工時には FIB に正対するよう試料台を 傾ける. FIB 切削は表面から行う. 切削する面を見ながら 加工する標準的な FIB 加工と SEM を組み合わせたもので ある. 原理的構成であるが、同一観察場所の追跡手段の 付加を必要とし、加工面のイオンビームによる損傷の恐 れがある. 第二の方式(図2中)は, 第一の方式と同じ 鏡筒配置をとるが、試料を SEM に対して 2 つの鏡筒の光 軸のなす角度だけ傾けて設置する. FIB は試料の横の面に あたるので、横から表面に沿って薄皮を剥ぐように切削 し、そのままの状態で SEM 観察を行う. 試料を機械的に 動かす必要はないが、傾斜面の SEM 観察になり、視野内 の高低差の補正が必要になる. 第三の方式(図2右)で は FIB 鏡筒を SEM 鏡筒に対して 90°の位置, すなわち直 交配置する. 第二の方式の課題を解決する装置が作られ te.

本稿の支援では,第三の方式の「高速加工観察分析装置(FIB-SEM)」(表1③)を用いた(図3).この装置には,EDS(エネルギー分散型X線分光器),EBSD(電子後方散乱回折法),ArIB(Ar イオンビームミリング),STEM

図2 FIB-SEM の切削・観察方式(左:表面切削,中:側面切削・斜め配置,右:同・直交配置)

(走査透過電子顕微鏡)が加えられ,SEM 観察に加えて, 元素マッピングや結晶構造解析などを行える.このため, 例えば 3D 再構築画面は元素の種類を色付け,区別して表 示できる.

FIB-SEM の Cut & See では, FIB ビーム軸にほぼ平行な 垂直の溝および隆起が SEM 観察面に現れるというカーテ ニング現象が起こり, SEM 観察の連続性を妨げる. 3D 画 像構築には Cut & See で何百枚もの写真を撮る. カーテ ニング現象がどこかで起こったら, 3D 構築の信頼性が失 われる. 「FIB-SEM の Cut & See ではカーテニング現象が

図3 高速加工観察分析装置(FIB-SEM)

起こるので、それを避けるようにしければならない」と、 よく書いてあるが、どうしたら避けられるかは、どこに も見当たらない、中尾氏はカーテニング現象に遭遇し、 自力でその解決法を探った、

イネの葉肉細胞の3次元画像を作成した時だが,FIB 面 に保護膜を設けて(図4左上),Cut & See を始めたとこ ろ(図4左下),カーテニング現象でSEM 面が荒れて観 察できなかった(図4右上).FIB 面に凹凸があったり, サンプル内に空孔があり,硬さの差があるとカーテニン グが起こる.Gaイオンビームが強すぎたかも知れない. FIB 面を見ると加工エリアの周辺がシャープに切れていな い(図4右中).そこでFIB 面をSEM 面と直角,かつ平 坦になるようミリングし,異なる材質の保護膜を追加の 上,イオンビーム電流を調整するなどの検討を行った結 果,枠線がシャープに切れてカーテニング現象のない観 察面を作ることに成功した(図4右下).

微細構造解析プラットフォームの電子顕微鏡利用にあ たり、様々な試料が持ち込まれる.生物系の軟らかいも のもあれば、セラミックスのような硬いものもある.大 きさ、形状、観察場所も様々である.既存装置の当たり 前の使い方では良い電子顕微鏡試料は作れない.失敗し たら、現象をよく観察し、原因を探り、対策を工夫し、 試行錯誤を重ねて、観察に適した電子顕微鏡試料を作り あげる.この結果,数々の秀でた利用成果が生まれている. 次章で紹介する成果例では、事例ごとに異なる課題に遭 遇し、粘り強くその解決に当たっている.

図4 FIB-SEM による Cut&See で SEM 面に見られるカーテニング現象への対策

3.1 FIB-SEM を用いたイネ葉肉細胞の三次元構造 解析 [9]

イネは塩害に弱い.河口近くの水田に海水が流入する と、イネは葉色が薄くなり、下の葉から枯れて、死んで しまう.イネが塩ストレスに曝されると、イネの葉の葉 肉細胞内の葉緑体構造が崩壊し、光合成活性が低下する ためとされるが障害発現機構は明らかでなかった.塩ス トレス障害発現機構解明に向け、FIB-SEM によるイネ葉 緑体の三次元構造解析を行うことになった.

葉肉細胞1個,端から端まで,側面からFIBで削って 表面をSEMで観察することを繰り返す.細胞を数十 nm 削るごとに撮った多数のSEM 画像から三次元画像を構築 する.細胞は50~100μmの大きさであるため,数百回 のCut & See を行う.1回の切削・観察には5分くらいか かるので300枚の画像を撮るには一昼夜かかる.細胞は 樹脂に包埋して試料台にセットしているので,細胞が樹 脂のどこにあるか探すことから観察は始まる.反復観察 は機械的に行えるが,多数の切削・観察を安定して行う には,切削や観察条件の精緻な調整が必要になる.

その一つが、前章に記したカーテニング現象である.

細胞を包埋した試料を SEM で観察すると, 白地の樹脂の 中に細胞が見えるが縦に筋が入ってしまった(図5(a)). 図5(a)は,図5(b)の面Aを見ている. これに垂直 な面BにGaイオンの集束ビームを当てて面Aを削る. そ こで,面Bを面Aに対して直角,かつ平坦にトリミング し,ビームに対し正確に直角になるようセットした. ま た硬さの違う面を切削するとカーテニング現象が起こる ので,切削対象となる細胞を特定し,その形状を考慮し て試料台に設置して極力細胞のみが切削されるよう配慮 した. この他ビーム電流調整など様々な工夫でカーテニ ング現象を抑制した.

SEM の観察ではコントラストの調整が重要になる.細胞が大きく,樹脂の中に埋め込まれているので,カットして細胞が表面に出てきたときにコントラストが変わる. 何枚も撮るときに,画面の上下,左右でコントラストが変わる. 何枚も撮るときに,画面の上下,左右でコントラストが 変わらないようにする.利用した装置は4つの電子検出 器(SEM 鏡筒内蔵 In-Lens 二次電子検出器,高真空試料 室設置二次電子検出器,SEM 鏡筒内蔵 BSE 検出器(エネ ルギー選択グリッド搭載),透過電子検出器)を備えてお り,単独でも組み合わせても使える.ビームブースト(増 強)という機能,エネルギーフィルターを使って,複数 検出器の相対感度,二次電子と反射電子の比率などを変 えることにより,コントラストを調整できる.SEM 鏡筒 内蔵 In-Lens 二次電子検出器のみで撮影した画像(図6(a)) に比べ,これに SEM 鏡筒内蔵 BSE 検出器を組み合わせ,

図 5 カーテニング現象の対策

図6 コントラストの調整

図 7 イネ葉肉細胞の三次元構造解析(左から, TEM 像;断面 SEM 像;3 D 断面例;3D 再構築)

コントラストの適正化を行うと、より明瞭な画像を撮影 できた(図6(b)). さらに、Cut & See の前に各試料に ついて最適な SEM 加速電圧と検出器感度の組合せなどの 条件出しを行う. 生物試料ではチャージアップが問題に なる. 加速電圧を 0.5kV から少しずつ上げて写真を撮り、 利用者に良い条件を選んで貰う. 加速電圧が低いと分解 能が下がり、加速電圧が高いと下の層まで透けて見えて しまう. このような試料の SEM 観察ならこういう条件で やりなさいというものはない. 観察条件は観察者自身が 見つけ出すしかない.

この他,様々な条件設定を行い,失敗もあったが,FIB-SEM を用いた Cut & See で葉肉細胞の 3 次元画像構築を 行なった. 葉肉細胞を TEM で観察して細胞核や葉緑体の あることは分かる (図 7 左)が,立体的な位置関係は分 からない.そこで,Cut & See を行い,SEM で或る切削断 面を見ると,その断面特有の比較的単純な図形が見られ る(図 7 中左). 25 × 25 × 15 μ m の領域を 50nm ステッ プで Cut & See を行い,300 枚の画像から 3 次元構造の 再構築を行うと,垂直面,水平面ごとにその断面の組織 に応じたパターンを描くことができる (図 7 中右).さら に,組織ごとに色付けして核や葉緑体の立体的位置関係 を表示できた(図 7 右).

塩害を受けたイネと正常なイネとを比較したイネ葉肉 細胞の三次元構造解析の結果,体積変化に有意な差はな く,細胞壁の内側に伸び広がっていた葉緑体が,塩害に よって細胞の内側に縮まり球状に変化している事が分 かった [12].

3.2 FIB を用いた TEM 試料作製による次世代半導体用配線接合材料の構造解析 [8][13]

長年,電子回路の配線・接続には鉛(Pb)と錫(Sn) の合金からなるハンダが用いられてきた.しかし,Pbの 環境への悪影響から,欧州連合(EU)はPbの使用を禁 ずる RoHS 規制を行い,Pbフリーハンダの開発が進んだ. 電子回路を構成する半導体は,情報処理から電力制御に 展開し,大電力を扱う次世代半導体の配線接合には高温 まで強固な接続を保つ事が求められる.これに応え,有 限会社ナプラは,Snに一定の割合で銅(Cu)などを混合し, Sn中にナノ金属間化合物をコンポジット化した機能性微 粒子金属を含む新規鉛フリーハンダを開発した.この材 料は耐熱性に優れ,-40~+200℃の過酷な熱履歴サイ クルに耐える.この優れた特性の由来を明らかにしよう と,名古屋大学微細構造解析プラットフォームの電子顕 微鏡で構造解析を行なった.

電子顕微鏡での解析では、まず前章に述べたように、 融点の低い、1 ~ 10 μ mのハンダ微粒子の取り扱いに工 夫を要した. 微粒子を FIB-SEMの試料台にセットできる ようになり、FIB で切削してハンダ微粒子の連続断面像を 観察した. Sn の中に、比較的明るく見える Sn-Cu 金属間 化合物がほぼ均一に分布していた(図8, 左は削りはじめ で右は中心部).

図8 ハンダ微粒子連続断面像

図9 ハンダ微粒子の元素マッピング像

Sn-Cu 金属間化合物(IMC)が橋渡し、 Cu 基板側から Cu を溶出させる

図 10 ハンダ接続界面における金属間化合物 Cu-Sn の骨格形成

次いで、透過電子顕微鏡による構造解析のため、ハン ダ微粒子をピックアップし、メッシュに固定してカーボ ン保護膜を蒸着して FIB による薄片化で観察用試料を作製 した.ハンダ微粒子はFIB加工時の熱ダメージに弱い.カー ボン保護膜の蒸着量などを最適化し, EBSD による結晶方 位確認, EDS 元素分析による金属間化合物の組成と配合 位置の確認などを行なって、薄片試料を作製した. この 試料について,温度を変え,反応科学超高圧(1,000kV) 電子顕微鏡(表1①)により加熱実験を行ったところ, 200℃に加熱しても組織変化がなく、構造解析から耐熱 性を確認できた.また、加速電圧 200kV の収差補正によ り原子分解能で観察できる走査透過電子顕微鏡(表1②) で元素マッピングを行なった(図9). Cu-Sn金属間化合 物(IMCC)は、Sn と Sn の粒界間に存在し、Sn-Sn 粒界 間の歪みを緩和していると見られる. ハンダ溶融時に分 散していた Cu-Sn の微粒子は冷却に伴い Cu-Sn 骨格を形 成して強固な接続が形成されている(図10,模式図).

3.3 Ar イオン研磨法により薄膜 TEM 試料を作製 し、人工光合成光触媒の新奇構造を発見 [10][14]

地球温暖化対策に,再生可能エネルギーへの期待が高 まっている.そのひとつに,光触媒を用いた太陽光によ る水分解,水素生成がある.東京大学の研究者らは従来 比4倍の光触媒効率を実現する画期的なイリジウム添加 チタン酸ストロンチウム(Ir-doped SrTiO₃)薄膜(厚さ 20nm)の成長に成功した.原子間力顕微鏡(AFM)で観 察すると,薄膜表面にナノドットの存在が認められたが, この構造からでは,高い光触媒効率を説明できなかった. そこで走査透過電子顕微鏡(STEM)(表12)を用いた より高い分解能の構造解析を行うこととなった.

Skeleton 構造形成

観察試料は厚い SrTiO₃ 基板上に成長させた Ir-doped SrTiO₃ 薄膜からつくる. FIB を使用して試料作製を試みた ところ,薄片化する過程で,ナノピラーが Ga⁺ ビームで ダメージを受けて消失してしまう.加工形状を楔形にし て作ったが(図11), STEM でピラーを観察することがで

図 11 FIB による楔形加工

図 13 光触媒薄膜中のナノピラー

きない. FIB による試料のダメージを避けるため, Ar ミ リングを用い,薄膜内部構造を立体的に観察できるよう, 薄膜に対して断面方向及び平面方向から観察出来る 2つ の TEM 試料を作製した(図 12).断面方向の観察には, 試料を 2 枚張り合わせ,機械加工で前処理した後,窪み を設け, Ar ミリングを行なった.平面方向の観察には, 試料を傾斜させて固定し,超精密研磨加工で 3°の傾斜を つけてから, Ar イオンミリングを 5 分間行なった.この 条件設定は,多くの試行錯誤の後に行なわれたものであ るが,傾斜研磨加工には, FIB での試行経験が活かされた という.

この試料の STEM 観察で,平面方向(図13(a)),断 面方向(図13(b))で図に示すような HAADF(高角環 状暗視野)像が得られた.AFMで観察されたナノドット 状のものは薄膜中に自律成長したナノピラーであった. ナノピラーは EELS 計測から Ir 金属であることがわかり, 5nm ほどのロッドで薄膜を貫通して表面に露出していた. この観察結果から,光励起によって電子/正孔が生成し, この正孔が露出したナノピラー先端部分で水の水素への 分解を促進させたと考えられた [15].

微細構造解析の代表的手法である電子顕微鏡観察は, これに適した試料作製があって初めて可能になる.名 古屋大学微細構造解析プラットフォームはサポートメ ニューに,試料作製,観察,解析の3工程を明記した. プラットフォームに持ち込まれる試料は,セラミックス, 金属,生物試料と様々である.試料ごとに作製方法を選 び,加工条件を探る.失敗も多く,試行錯誤の連続とい う.中尾氏は,失敗の状況をよく観察して対処・工夫し, 困難を乗り越えて,様々な利用成果を生み出す試料作製 を行ってきた.苦労するが,成功した時の喜びは大きい ので楽しいという.より綺麗な(ダメージレスな)サン プルを作製するのは,全ての試料作製者にとって悩みで もあり,課題でもある.装置の使い分けが必要であり, 同種の装置でも条件や結果が異なる.利用者は研究目的 があって依頼するが,電子顕微鏡観察の経験が少ないた め,無理な要求をすることもある.利用者の要望をよく 把握し,材料の性質を理解するとともに,装置の特性を 上手に利用して加工方法や条件を選択するための"ノウハ ウ"や"スキル"は一層重要になる.経験,研鑽を積む一 方,広報を通じて何が出来るかを知ってもらうことによっ てユーザーを増やし,人と交流できる環境をモチベーショ ンに,微細構造解析プラットフォームの活動を推進した いと,今後の一層の活躍を期待させるコメントがあった.

- [1] 文部科学省ナノテクノロジープラットフォーム事業 技術スタッフ表彰, https://www.nanonet.go.jp/ntj/ award/
- [2] ナノテクノロジープラットフォーム平成 30 年 度秀でた利用成果と技術スタッフ表彰者が決 定!!, https://www.nanonet.go.jp/ntj/topics_ gov/?mode=article&article_no=4607
- [3]「高精度 FIB 加工技術を用いた微細構造観察 技術支援貢献賞受賞」, https://www.nanonet.go.jp/pages/research_support_award/H30_Award_2.pdf
- [4] 文部科学省ナノテクノロジープラットフォーム事業事業の概要, https://www.nanonet.go.jp/ntj/about/
- [5] 高性能電子顕微鏡による反応科学・ナノ材料科学研究 支援拠点(名古屋大学), https://nanoplat.nagoyamicroscopy.jp
- [6] 文部科学省ナノテクノロジープラットフォーム事業 利用成果セレクション、https://www.nanonet.go.jp/ ntj/selection/
- [7]「2020 年秀でた利用成果:ガス環境下における 自動車触媒ナノ粒子のオペランド TEM 観察」, NanotechJapan Bulletin Vol. 13, No. 2, 2020, https:// www.nanonet.go.jp/magazine/feature/excellentresult/29.html
- [8]「2019 秀でた利用成果:次世代半導体配線接合用高機 能材料の開発」NanotechJapan Bulletin Vol. 12, No. 5,

2019, https://www.nanonet.go.jp/magazine/feature/excellent-result/28.html

- [9]「2018 秀でた利用成果:塩ストレス下におけるイ ネ葉の葉緑体の三次元構造解析」, NanotechJapan Bulletin Vol. 11, No. 4, 2018, https://www.nanonet. go.jp/magazine/feature/excellent-result/21.html
- [10]「2017 秀でた利用成果:超高効率水素製造光触媒 を実現した新奇薄膜構造の発見とその構造解析」, NanotechJapan Bulletin Vol. 10, No. 2, 2017, https:// www.nanonet.go.jp/magazine/feature/excellentresult/1.html
- [11] 中尾知代,「名古屋大学ナノテクノロジープラット フォーム微細構造解析 チームの紹介~電子顕微鏡を 用いた研究支援と原動力となっているスタッフたち ~」,まてりあ第58巻第4号 (2019) pp. 214-215
- [12] Koji Yamane, Takao Oi, Sakiko Enomoto, Hiroshi Miyake, and Mitsutaka Taniguchi, "Three dimensional ultrastructure of chloroplast pockets formed under salinity stress", Plant Cell and Environment, Vol.41, Issue 3, pp.563–575 (2018).
- [13]「次世代半導体配線接合用高機能材料の開 発」,https://www.nanonet.go.jp/pages/seika_ selection/2019_SeikaSelection_2.pdf
- [14]「超高効率水素製造光触媒を実現した新奇薄膜構造の 発見とその構造解析」, https://www.nanonet.go.jp/ pages/seika_selection/2017_SeikaSelection_2.pdf
- [15] Seiji Kawasaki, Ryota Takahashi, Takahisa Yamamoto, Masaki Kobayashi, Hiroshi Kumigashira, Jun Yoshinobu, Fumio Komori, Akihiko Kudo & Mikk Lippmaa, "Photoelectrochemical water splitting enhanced by self-assembled metal nanopillars embedded in an oxide semiconductor photoelectrode", Nature Communications Vol. 7, Article number: 11818 (2016).

(図表はすべて,名古屋大学 微細構造解析プラット フォームからの提供による)

(古寺 博)