

文部科学省ナノテクノロジープラットフォーム 平成 30 年度秀でた利用成果 広帯域波長掃引パルス量子カスケードレーザの開発

浜松ホトニクス株式会社 杉山 厚志, 大河原 悟 東北大学 戸津 健太郎, 森山 雅昭, 江刺 正喜

(左)浜松ホトニクス 大河原 悟,杉山 厚志 (右)東北大学 森山 雅昭,戸津 健太郎,江刺 正喜

ナノテクノロジープラットフォーム事業の支援を受け て, 波長掃引パルス量子カスケードレーザ (Quantum Cascade Lasers; QCLs) を開発した. この製品は分光機 能を備えた中赤外レーザと言い換えることができる. こ の章の表題は新製品のキャッチコピーである. これまで の赤外分光の主役は FTIR であり、干渉計を使った分光技 術は成熟の域に達している. 高い S/N の計測データを安 定して提供し、様々な分野で活躍している [1][2]. しか しながら、一般的な FTIR の計測では対象物を測定室に入 れて測定する必要がある.測定窓に近接させて測定する ART 法もあるが、やはり対象物との位置関係において制 約がある. これが赤外分光の現場への適用を妨げる要因 となっており、FTIR の現場適用は限られた分野に留まっ ている. 波長掃引パルス QCL はこの弱点を見事に補って いる. レーザによるビーム指向性をもっているため, 測 定対象物へのアクセス性には大きな自由度を発揮する. また、本光源の分光機能は MEMS 回折格子によって実現 していることから, 波長掃引速度はおおよそ 1.8kHz に達 し、計測スループットを飛躍的に高速化することにつな がる. この"測定対象物へのアクセス性"と"計測スルー

プットの高速化"が医療,創薬,製造などの現場での赤外 分光の実用化に強力な一手になると信じている.

中赤外領域(波長4µmから16µm)を発振波長とす る半導体レーザである量子カスケードレーザは、様々な 分子の基本振動に由来する強い吸収線に一致した発振波 長を有するため、レーザ分光法を用いた極微量ガス分析 への産業応用が進んでいる [3][4]. 浜松ホトニクスでは ガス分析用中赤外光源として、分布帰還型(Distributed Feedback, DFB) 量子カスケードレーザの開発, 製造, 販売を手掛けている. DFB型 QCL はペルチェ素子などの 温度制御デバイス上に搭載して動作させ、その駆動温度 により発振波長を制御することが可能である.例えば, 発振波長 4.56um (L12004-2190H-C) では最大で 10nm 程度の発振波長の制御が可能であるが、製品仕様上シン グルモードが保障される範囲はさらに狭い波長域に制限 される. そのため, これらを用いて分光分析する場合は, ターゲットガス成分毎にその波長に適合した DFB 型 QCL を用意する必要がある. グルコースなどの生体物質やプ ラスチック物質など、ブロードな吸収帯を有する物質の 分析にはベースライン計測用の DFB 型 QCL と吸収ピーク 計測用の DFB 型 QCL の 2 つを用意しなければならない [5]. 当然のことながら,単一光源でより広い波長範囲の 吸収分光データの取得を実現したいという要求がうまれ る.浜松ホトニクスではこうした要求に応えるため,広 帯域波長を発振可能な二重上位順位型の量子カスケード レーザを開発し,これを用いて外部共振器を構成するこ とで広い波長範囲の掃引を実現した.さらに,光源の小 型化,高速掃引を実現するため MEMS 回折格子の開発に も取り組み,この MEMS 回折格子の開発においてナノテ クノロジープラットフォーム事業の支援を頂いた.

MEMS 回折格子の作製プロセスで最も重要な点は回 折格子を設計通り、均一性良く作製することである.開 発当初、シリコンプロセスにより回折格子を作製する方 法としてレーザ描画によるグレースケール露光とドライ エッチングによる形状転写技術と、ナノインプリント法 の2つを考えた.東北大学マイクロシステム融合研究開 発センターはこの両技術について豊富な実績があった上 [6]、プロセスの全工程を完了できる設備を完備してい た.我々のグループは半導体レーザを開発,製造する設 備を保有していたが、GaAsと InP を対象とした装置であ り、シリコンを処理できる装置ではない.このような立 場からナノテクノロジープラットフォーム事業と同施設 は,製品開発の可能性を広げる貴重な存在であった.近年, 技術が進展するスピードは益々加速し,新しい製品・技 術開発に許される期間は短縮化している.この流れは今 後より一層加速するものと思われる.半導体関連の製品 開発には設備導入の負担が非常に大きい.多様化する製 品に対応させることも容易ではない.少量試作に対応す る受託メーカーも少なくなってきている.このような中, 自由度の大きい共用設備の存在はより重要になると考え ている.

開発した波長掃引パルス量子カスケードレーザの光学 系を図1に示す.リトロー型外部共振器構造を採用した. 小型で,広い波長範囲を高速掃引可能な外部共振型レー ザ光源を実現するにはいくつかの要素技術の開発が必要 である.ここでは,3つの要素技術開発について紹介する.

4.1 量子カスケード利得媒質の開発

外部共振器レーザで広帯域波長掃引を実現するために は、広い波長範囲の利得を有する媒質が必要となる.こ れに対し我々は、2つの発光上位準位を用いる結合二重上 位準位構造(dual upper state design, DAU)を開発した. 1µm以上の利得波長帯域を持つばかりでなく、1000K以 上の特性温度を有するなど、非常に優れたレーザ特性が

図1 波長掃引 QCL の光学系

確認されている [7][8][9].

4.2 低反射コーティング技術の開発

これを外部共振器用利得媒質として用いるには、レー ザ端面の低反射化が重要である.しかしながら、中赤外 領域において信頼性の高い低反射膜を形成することは容 易ではない.耐熱性,耐湿性を満足しつつ,応力に勝る 密着力を確保しなければならない.さらに、中赤外領域 において光吸収の少ない材料は限られる.高屈折率材と して Ge, Si,中間屈折率材として ZnS, ZnSe,これらに 加えて絶縁性,密着性を確保するための酸化物,低反射 帯域を広げるための低屈折率材として各種フッ化物が用 いられ、多層膜として形成される.以上の設計要件を考 慮して、レーザ端面の反射率を波長帯域 1µm 以上にわ たって 0.5%以下にする技術を確立した.

4.3 MEMS 回折格子の開発

光源を小型化するために、MEMS 回折格子の開発に取

り組んだ.本光源の実現には光学系の都合上,5mm↓の 回折格子面積が要求される.一般的な MEMS ミラーと比 較するとかなり大きなミラーを駆動させなければならな い.さらに,波長 10µm 付近まで波長を掃引するために は 200/mm 以下の回折格子密度が必要となる.例えば, 回折格子密度 100/mm を用いて波長 8µm から 10µm ま で掃引するためには約 8 度の機械傾斜角を変化させなけ ればならない.これらの要求を満たすために,比較的容 易に大きな駆動力を発生できる電磁アクチュエータ型を 採用した.

図2は開発した MEMS 回折格子の構造で,電磁アクチュ エータ型1次元 MEMS ミラーのミラー面に回折格子を形 成したものである.ミラーは円形で5mm¢である.図3に, プロセスの概要を示した.はじめに,電磁コイルをCuダ マシン構造として作製し,配線プロセスを経て最上層に ナノインプリント法で回折格子を形成する.高い回折効 率を得るために回折格子形状はブレーズ形状とした.図 4に回折格子パターニング後の断面 SEM 像を示す.最後 に,ドライエッチングより貫通プロセスを施し,デバイ スが完成する.図5に,開発した MEMS 回折格子の周波

図4 ブレーズ回折格子の SEM 像

数特性を示す. 共振周波数はおおよそ 1.8kHz に達し,約 9度の機械傾斜全角を得た. 駆動コイルと回折格子をウェ ハの同一面上に形成することで,5mmφの比較的大きな ミラー径にもかかわらず,高い共振周波数と大きな機械

傾斜角を両立することができた.

製品化した波長掃引パルス量子カスケードレーザ L14890-09の仕様を表1に示す.図6は製品外観であり, 片手に収まる大きさに仕上がった.波長掃引範囲は利得 媒質の利得領域に制限されるが、200cm⁻¹以上の掃引範 囲を達成した.これを用いて、ポリスチレンフィルムの 分光実験データをFTIRのデータと比較して図7に示した. 利得領域の両端は S/N が低下するが、中央 200cm⁻¹程度 の帯域では FTIR と比較しても遜色ないデータが得られて いる.波長 7µm 帯試作品を光源としてメタンガスの吸収 分光実験を行った結果を図8に示す.発振スペクトル線 幅は半値幅 1.5cm⁻¹程度であり、それと同程度の吸収線分 解能を発揮できていることが分かった.

表1 L14890-09の仕様

項目	仕様値(typ.)
中心波長	9.3 µm
波長掃引幅	200 cm ⁻¹
光パルス出力	600 mW
発振線幅	$1.5~{ m cm}^{-1}$
波長掃引周波数	1.8 kHz

量子カスケード構造利得媒質と MEMS 回折格子を組み 合わせ、リトロー型外部共振器を構成し、波長掃引パル ス量子カスケードレーザを開発し製品化した. MEMS 回 折格子はミラー構造を最適化することで φ5mm の大面積 と高い共振周波数を両立した.また、中赤外領域におい て十分な波長掃引範囲を実現できる振り角特性を確認し た.この波長可変光源を用いて吸収分光実験を行い、広 い波長範囲の吸収分光データを、高速かつ高い分解能で 取得できることを実証した.

MEMS 回折格子の開発はナノテクノロジープラット フォーム事業(東北大学 微細加工プラットフォーム) の支援を受けて実施されました.東北大学マイクロシス テム融合研究開発センターの江刺教授,戸津准教授,森 山助教,および研究員の皆様に感謝致します.また,共 同研究者の大河原氏には幾度となく仙台へ出張してもら い,時には2週間以上滞在して試作に取り組んでもらう こともありました.その他多くの社内外の多大なる協力 があって,試作開始から2年間という短期間で製品化に 資するレベルに達することができました.ここにすべて の関係者に対して感謝の意を表します.

[1] Agilent technologies Web site, "FTIR アプリケーショ

 \succ " https://www.chem-agilent.com/appnote/product. php (accessed Feb. 27, 2019).

- [2] 島津製作所 Web site, "FTIR アプリケーションデー タ・技術資料" https://www.an.shimadzu.co.jp/ftir/ support/lib/index.htm (accessed Feb. 27, 2019).
- [3] A.A.Kosterev and F.K.Tittle :"Chemical sensors based on quantum cascade lasers" IEEE J.Quantum Elec. 38 (2002) 582.
- [4] 枝村忠孝,秋草直大,杉山厚志,落合隆英,藤田和上, 山西正道,菅博文:「DFB 量子カスケードレーザーと その分光応用」、レーザー研究 36 (2008) 75
- [5] 松浦祐司, 応用物理 第87巻第3号 (2018)
- [6] K. Totsu, K. Fujishiro, S. Tanaka and M. Esashi :" Fabrication of three-dimensional microstructure using maskless gray-scale lithography", Sensors and actuators. A, Physical Vol. 130–131, pp. 387-392 (2006)
- [7] K. Fujita, M. Yamanishi, and T. Edamura :"Extrimely temperature-insensitive continuous-wave puantum cascade lasers", Appl. Phys. Lett. 101, 181111 (2012)
- [8] T. Dougakiuchi, K. Fujita, A Sugiyama and T. Edamura
 "Broadband tuning of continuous wave quantum cascade lasers in long wavelength (>10 μ m)", Opt. Express Vol. 22, No. 17, pp. 19930-19935 (2014)
- [9] K. Fujita, T. Dougakiuchi, and M. Yamanishi : "Broadgain ($\Delta\lambda/\lambda0$ ~0.4), temperature-insensitive (T0~510K) quantum cascade lasers", Opt. Express Vol. 19, pp. 2694~2701 (2011)

(浜松ホトニクス株式会社 化合物材料センター 杉口

杉山 厚志)

【お問い合わせ】
 微細加エプラットフォーム
 東北大学
 ☎ 022-229-4113
 E-mail shisaku-info@ml.tohoku.ac.jp

ホームページ http://cints-tohoku.jp/